3.592 \(\int \frac {1}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))^2} \, dx\)

Optimal. Leaf size=157 \[ -\frac {F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d \left (a^2-b^2\right )}-\frac {b E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a d \left (a^2-b^2\right )}+\frac {\left (3 a^2-b^2\right ) \Pi \left (\frac {2 b}{a+b};\left .\frac {1}{2} (c+d x)\right |2\right )}{a d (a-b) (a+b)^2}+\frac {b^2 \sin (c+d x) \sqrt {\cos (c+d x)}}{a d \left (a^2-b^2\right ) (a+b \cos (c+d x))} \]

[Out]

-b*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/a/(a^2-b^2)/d-(cos(1/
2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/(a^2-b^2)/d+(3*a^2-b^2)*(cos(1/
2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticPi(sin(1/2*d*x+1/2*c),2*b/(a+b),2^(1/2))/a/(a-b)/(a+b)^2/d+b^
2*sin(d*x+c)*cos(d*x+c)^(1/2)/a/(a^2-b^2)/d/(a+b*cos(d*x+c))

________________________________________________________________________________________

Rubi [A]  time = 0.44, antiderivative size = 157, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.261, Rules used = {2802, 3059, 2639, 3002, 2641, 2805} \[ -\frac {F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d \left (a^2-b^2\right )}-\frac {b E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a d \left (a^2-b^2\right )}+\frac {\left (3 a^2-b^2\right ) \Pi \left (\frac {2 b}{a+b};\left .\frac {1}{2} (c+d x)\right |2\right )}{a d (a-b) (a+b)^2}+\frac {b^2 \sin (c+d x) \sqrt {\cos (c+d x)}}{a d \left (a^2-b^2\right ) (a+b \cos (c+d x))} \]

Antiderivative was successfully verified.

[In]

Int[1/(Sqrt[Cos[c + d*x]]*(a + b*Cos[c + d*x])^2),x]

[Out]

-((b*EllipticE[(c + d*x)/2, 2])/(a*(a^2 - b^2)*d)) - EllipticF[(c + d*x)/2, 2]/((a^2 - b^2)*d) + ((3*a^2 - b^2
)*EllipticPi[(2*b)/(a + b), (c + d*x)/2, 2])/(a*(a - b)*(a + b)^2*d) + (b^2*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(
a*(a^2 - b^2)*d*(a + b*Cos[c + d*x]))

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 2802

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> -S
imp[(b^2*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n + 1))/(f*(m + 1)*(b*c - a*d)*(a^2 -
 b^2)), x] + Dist[1/((m + 1)*(b*c - a*d)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n
*Simp[a*(b*c - a*d)*(m + 1) + b^2*d*(m + n + 2) - (b^2*c + b*(b*c - a*d)*(m + 1))*Sin[e + f*x] - b^2*d*(m + n
+ 3)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] &
& NeQ[c^2 - d^2, 0] && LtQ[m, -1] && IntegersQ[2*m, 2*n] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||  !
(IntegerQ[2*n] && LtQ[n, -1] && ((IntegerQ[n] &&  !IntegerQ[m]) || EqQ[a, 0])))

Rule 2805

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2*EllipticPi[(2*b)/(a + b), (1*(e - Pi/2 + f*x))/2, (2*d)/(c + d)])/(f*(a + b)*Sqrt[c + d]), x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rule 3002

Int[(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)]))/((c_.) + (d_.)*sin[
(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[B/d, Int[(a + b*Sin[e + f*x])^m, x], x] - Dist[(B*c - A*d)/d, Int[(a +
 b*Sin[e + f*x])^m/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]
&& NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 3059

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2)/(Sqrt[(a_.) + (b_.)*sin[(e_.) +
(f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> Dist[C/(b*d), Int[Sqrt[a + b*Sin[e + f*x]]
, x], x] - Dist[1/(b*d), Int[Simp[a*c*C - A*b*d + (b*c*C - b*B*d + a*C*d)*Sin[e + f*x], x]/(Sqrt[a + b*Sin[e +
 f*x]]*(c + d*Sin[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2
- b^2, 0] && NeQ[c^2 - d^2, 0]

Rubi steps

\begin {align*} \int \frac {1}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))^2} \, dx &=\frac {b^2 \sqrt {\cos (c+d x)} \sin (c+d x)}{a \left (a^2-b^2\right ) d (a+b \cos (c+d x))}+\frac {\int \frac {\frac {1}{2} \left (2 a^2-b^2\right )-a b \cos (c+d x)-\frac {1}{2} b^2 \cos ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))} \, dx}{a \left (a^2-b^2\right )}\\ &=\frac {b^2 \sqrt {\cos (c+d x)} \sin (c+d x)}{a \left (a^2-b^2\right ) d (a+b \cos (c+d x))}-\frac {\int \frac {-\frac {1}{2} b \left (2 a^2-b^2\right )+\frac {1}{2} a b^2 \cos (c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))} \, dx}{a b \left (a^2-b^2\right )}-\frac {b \int \sqrt {\cos (c+d x)} \, dx}{2 a \left (a^2-b^2\right )}\\ &=-\frac {b E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a \left (a^2-b^2\right ) d}+\frac {b^2 \sqrt {\cos (c+d x)} \sin (c+d x)}{a \left (a^2-b^2\right ) d (a+b \cos (c+d x))}-\frac {\int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{2 \left (a^2-b^2\right )}+\frac {\left (3 a^2-b^2\right ) \int \frac {1}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))} \, dx}{2 a \left (a^2-b^2\right )}\\ &=-\frac {b E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a \left (a^2-b^2\right ) d}-\frac {F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{\left (a^2-b^2\right ) d}+\frac {\left (3 a^2-b^2\right ) \Pi \left (\frac {2 b}{a+b};\left .\frac {1}{2} (c+d x)\right |2\right )}{a (a-b) (a+b)^2 d}+\frac {b^2 \sqrt {\cos (c+d x)} \sin (c+d x)}{a \left (a^2-b^2\right ) d (a+b \cos (c+d x))}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 3.51, size = 238, normalized size = 1.52 \[ \frac {\frac {4 b^2 \sin (c+d x) \sqrt {\cos (c+d x)}}{\left (a^2-b^2\right ) (a+b \cos (c+d x))}+\frac {\frac {2 \left (4 a^2-3 b^2\right ) \Pi \left (\frac {2 b}{a+b};\left .\frac {1}{2} (c+d x)\right |2\right )}{a+b}-\frac {2 \sin (c+d x) \left (\left (b^2-2 a^2\right ) \Pi \left (-\frac {b}{a};\left .\sin ^{-1}\left (\sqrt {\cos (c+d x)}\right )\right |-1\right )+2 a (a+b) F\left (\left .\sin ^{-1}\left (\sqrt {\cos (c+d x)}\right )\right |-1\right )-2 a b E\left (\left .\sin ^{-1}\left (\sqrt {\cos (c+d x)}\right )\right |-1\right )\right )}{a \sqrt {\sin ^2(c+d x)}}+8 a \left (\frac {a \Pi \left (\frac {2 b}{a+b};\left .\frac {1}{2} (c+d x)\right |2\right )}{a+b}-F\left (\left .\frac {1}{2} (c+d x)\right |2\right )\right )}{(a-b) (a+b)}}{4 a d} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(Sqrt[Cos[c + d*x]]*(a + b*Cos[c + d*x])^2),x]

[Out]

((4*b^2*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/((a^2 - b^2)*(a + b*Cos[c + d*x])) + ((2*(4*a^2 - 3*b^2)*EllipticPi[(
2*b)/(a + b), (c + d*x)/2, 2])/(a + b) + 8*a*(-EllipticF[(c + d*x)/2, 2] + (a*EllipticPi[(2*b)/(a + b), (c + d
*x)/2, 2])/(a + b)) - (2*(-2*a*b*EllipticE[ArcSin[Sqrt[Cos[c + d*x]]], -1] + 2*a*(a + b)*EllipticF[ArcSin[Sqrt
[Cos[c + d*x]]], -1] + (-2*a^2 + b^2)*EllipticPi[-(b/a), ArcSin[Sqrt[Cos[c + d*x]]], -1])*Sin[c + d*x])/(a*Sqr
t[Sin[c + d*x]^2]))/((a - b)*(a + b)))/(4*a*d)

________________________________________________________________________________________

fricas [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cos(d*x+c)^(1/2)/(a+b*cos(d*x+c))^2,x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{{\left (b \cos \left (d x + c\right ) + a\right )}^{2} \sqrt {\cos \left (d x + c\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cos(d*x+c)^(1/2)/(a+b*cos(d*x+c))^2,x, algorithm="giac")

[Out]

integrate(1/((b*cos(d*x + c) + a)^2*sqrt(cos(d*x + c))), x)

________________________________________________________________________________________

maple [B]  time = 1.36, size = 612, normalized size = 3.90 \[ -\frac {\sqrt {-\left (-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (-\frac {2 b^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}}{a \left (a^{2}-b^{2}\right ) \left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b +a -b \right )}-\frac {\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{\left (a +b \right ) a \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}}-\frac {b \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{a \left (a^{2}-b^{2}\right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}}+\frac {b \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{a \left (a^{2}-b^{2}\right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}}-\frac {6 a b \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, \EllipticPi \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), -\frac {2 b}{a -b}, \sqrt {2}\right )}{\left (a^{2}-b^{2}\right ) \left (-2 a b +2 b^{2}\right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}}+\frac {2 b^{3} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, \EllipticPi \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), -\frac {2 b}{a -b}, \sqrt {2}\right )}{a \left (a^{2}-b^{2}\right ) \left (-2 a b +2 b^{2}\right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}}\right )}{\sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/cos(d*x+c)^(1/2)/(a+b*cos(d*x+c))^2,x)

[Out]

-(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b^2/a/(a^2-b^2)*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*
d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(2*cos(1/2*d*x+1/2*c)^2*b+a-b)-1/(a+b)/a*(sin(1/2*d*x+1/2*c)^2)^(1/2)
*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+
1/2*c),2^(1/2))-b/a/(a^2-b^2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1
/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+b/a/(a^2-b^2)*(sin(1/2*d*x+1/2*c)^2)
^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/
2*d*x+1/2*c),2^(1/2))-6*a/(a^2-b^2)/(-2*a*b+2*b^2)*b*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^
(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),-2*b/(a-b),2^(1/2))+2
/a/(a^2-b^2)/(-2*a*b+2*b^2)*b^3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x
+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),-2*b/(a-b),2^(1/2)))/sin(1/2*d*x+1/2*c)/(2
*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{{\left (b \cos \left (d x + c\right ) + a\right )}^{2} \sqrt {\cos \left (d x + c\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cos(d*x+c)^(1/2)/(a+b*cos(d*x+c))^2,x, algorithm="maxima")

[Out]

integrate(1/((b*cos(d*x + c) + a)^2*sqrt(cos(d*x + c))), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {1}{\sqrt {\cos \left (c+d\,x\right )}\,{\left (a+b\,\cos \left (c+d\,x\right )\right )}^2} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(cos(c + d*x)^(1/2)*(a + b*cos(c + d*x))^2),x)

[Out]

int(1/(cos(c + d*x)^(1/2)*(a + b*cos(c + d*x))^2), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cos(d*x+c)**(1/2)/(a+b*cos(d*x+c))**2,x)

[Out]

Timed out

________________________________________________________________________________________